Data analytics, in the form of unsupervised learning, has a pivotal role to play in properly identifying the forecast groups to focus on within a predictive maintenance framework. Classifying components in sizeable groups, e.g. main engine, diesel generators etc., enables shipping companies to untap strategic sourcing initiatives, increase bargaining power against suppliers and gauge significant volume discounts.
Further deploying clustering analysis within each forecast group, the underlying spares can be further classified into specific segments based on similar attributes e.g. maker, vessel category, price and number of unique vessels requiring the same part. For instance, a Diesel Generator forecast group can have numerous segments highlighting a varying degree of criticality which can then be used to define inventory policies per spare part in alignment with global policies, such as TMSA 3, or other regulations.
From that point onwards companies can switch gear into supervised learning, and deploy predictive models to predict future demand of each spare part cluster under each forecast group. Data availability and degree of automation could dictate the underlying method, i.e. Random Forest if data is scarce or Deep Learning with enough breadth and depth of time series data. In any case, any ensemble method approach could benefit from utilization of exogenous variables such as equipment running hours, onboard sensor data, vessel age, crew experience etc. The end result would be the forecasted quantity per group, disseminated to the underlying critical spares.
The analytics framework around predictive maintenance is enhanced by the inclusion of a prescriptive model that leverages all associated costs to “prescribe” the consensus forecast to be procured. These models pit the predictive model quantities against inventory, forwarding, stock-out and acquisition costs and use operations research algorithms to optimize the exact spare part quantities that ensure the commercial availability of the vessel whilst minimizing the associated upstream supply chain spend.