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Artificial intelligence (AI) is a transformational $15 trillion 
opportunity. Yet, as AI becomes more sophisticated, more 
and more decision making is being performed by an 
algorithmic ‘black box’. To have confidence in the outcomes, 
cement stakeholder trust and ultimately capitalise on the 
opportunities, it may be necessary to know the rationale of 
how the algorithm arrived at its recommendation or decision 
– ‘Explainable AI’. Yet opening up the black box is difficult 
and may not always be essential. So, when should you lift 
the lid, and how?
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The $15 trillion question: 

AI has entered the business mainstream, 
opening up opportunities to boost 
productivity, innovation and fundamentally 
transform operating models. As AI grows in 
sophistication, complexity and autonomy, it 
opens up transformational opportunities for 
business and society. More than 70% of the 
executives taking part in a 2017 PwC study 
believe that AI will impact every facet of 
business. Overall, PwC estimates that AI will 
drive global gross domestic product (GDP) 
gains of $15.7 trillion by 2030.

As businesses adoption of AI becomes 
mainstream, stakeholders are increasingly 
asking what does AI mean for me, how can 
we harness the potential and what are the 
risks? Cutting across these considerations 
is the question of trust and how to earn 
trust from a diverse group of stakeholders 
– customers, employees, regulators and 
wider society. There have been a number 
of AI winters over the last 30 years which 
have predominantly been caused by an 
inability of technology to deliver against the 
hype. However with technology now living 
up to the promise, the question may be 
whether we face another AI winter due to 
technologists’ focus on building ever more 
powerful tools without thinking about how 
to earn the trust of our wider society.

The executive view of AI on trust

AI is growing in sophistication, complexity and autonomy. This 
opens up transformational opportunities for business and society. 
At the same time, it makes explainability ever more critical.

67%
of the businesses 
leaders taking part in 
PwC’s 2017 Global CEO 
Survey believe that AI 
and automation will 
impact negatively on 
stakeholder trust levels 
in their industry in the 
next five years.

Source: PwC 20th Annual CEO Survey, 2017

Introduction

This leads to an interesting question – does 
AI need to be explainable (or at least 
understandable) before it can become truly 
mainstream, and if it does, what does 
explainability mean?

In this Whitepaper we look at explainability 
for the fastest growing branch of real-world 
AI, that of Machine Learning. What 
becomes clear is that the criticality of the 
use case drives the desire, and therefore 
the need, for explainability. For example, 
the majority of users of recommender 
systems will trust the outcome without 
feeling the need to lift the lid of the black 
box. This is because the underlying 
approach to producing recommendations 
is easy to understand – ‘you might like this 
if you watched that’ and the impact of a 
wrong recommendation is low (a few £ 
spent on a bad film or a wasted 30 minutes 
watching a programme on catch up). 
However as the complexity and impact 
increases, that implicit trust quickly 
diminishes. How many people would trust 
an AI algorithm giving a diagnosis rather 
than a doctor without having some form of 
clarity over how the algorithm came up with 
the conclusion? Although the AI diagnosis 
may be more accurate, a lack of 
explainability may lead to a lack of trust. 
Over time, this acceptance may come from 
general adoption of such technology 
leading to a pool of evidence that the 
technology was better than a human, but 
until that is the case, algorithmic 
explainability is more than likely required.

Can you trust your AI?
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Emerging frontier 
The emerging frontier of AI is machine 
learning (ML). For the purposes of this 
paper, we define Machine Learning’ as 
a class of learning algorithms exemplified 
by Artificial Neural Networks, Decision 
Trees, Support Vector Machines, etc.: 
algorithms that can learn from examples 
(instances) and can improve their 
performance with more data over time. 
Through machine learning, a variety of 
‘unstructured’ data forms including 
images, spoken language, and the internet 
(human and corporate ‘digital exhaust’) are 
being used to inform medical diagnoses, 
create recommender systems, make 
investment decisions and help driverless 
cars see stop signs We primarily focus on 
machine learning, a particular class of AI 
algorithm, because:

i)  ML is the responsible for the majority of 
recent advances and renewed interest in 
AI, and 

ii)  ML is a statistical approach to AI that by 
its very nature can be difficult to interpret 
and validate.

Exhibit 1 | Classifying AI algorithms

Rule based Non rule based

ML Unsupervised learning

Supervised learning

Reinforcement learning

AI

Source: PwC

Operating in the dark 
The central challenge is that many of the AI 
applications using ML operate within black 
boxes, offering little if any discernible 
insight into how they reach their outcomes. 
For relatively benign, high volume, decision 
making applications such as an online retail 
recommender system, an opaque, yet 
accurate algorithm is the commercially 
optimal approach. This is echoed across 
the majority of current enterprise AI which 
is primarily concerned with showing 
adverts, products, social media posts and 
search results to the right people at the 
right time. The ‘why’ doesn’t matter, as 
long as revenue is optimised.

This has driven an approach where 
accuracy, above all else, has been the main 
objective in machine learning applications. 
The dominant users and researchers (often 
in different parts of the same large 
technology firms) have been concerned 
with the development of ever more 
powerful models to optimise current 
profits, and pave the way for future revenue 
streams such as self-driving cars.

In conversations with clients, we often refer 
to this approach (perhaps unfairly!) as 
‘machine learning as a Kaggle competition’, 
referencing the popular website1 where 
teams compete to build the most accurate 
machine learning models. In our view, this 
is a one dimensional vision of machine 
learning applications, where the biggest, 
latest, most complex methods vie for 
supremacy on the basis of a simple 
mathematical metric.

But what if the computer says ‘No’? The 
absurdity of inexplicable black box 
decision making is lampooned in the 
famous (in the UK at least) ‘Computer says 
No’ sketch2. It is funny for a number of 
reasons, not least that a computer should 
hold such sway over such an important 
decision and not in any way be held to 
account. There is no way of knowing if it’s 
an error or a reasonable decision. Whilst 
we have become accustomed to (non-AI) 
algorithmic decisions being made about 
us, despite the potential for unfairness, the 
use of AI for ‘big ticket’ risk decisions in the 
finance sector, diagnostic decisions in 
healthcare and safety critical systems in 
autonomous vehicles have brought this 
issue into sharp relief. With so much at 
stake, decision taking AI needs to be able 
to explain itself.

1 https://www.kaggle.com/ 
2 https://en.wikipedia.org/wiki/Little_Britain
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Building trust
If capitalising on the $15 trillion AI 
opportunity depends on understanding 
and trust, what are the key priorities?

Explainable AI (or ‘XAI’) is a machine 
learning application that is interpretable 
enough that it affords humans a degree of 
qualitative, functional understanding, or 
what has been called ‘human style 
interpretations’. This understanding can be 
global allowing the user to understand how 
the input features (the term used in the ML 
community for ‘variables’) affect the 
model’s output with regard to the whole 
population of training examples. Or it can 
be local in which case it explains a 
specific decision.

Explainable AI looks at why a decision 
was made so AI models can be more 
interpretable for human users and enable 
them to understand why the system 
arrived at a specific decision or 
performed a specific action. XAI helps 
bring transparency to AI, potentially 
making it possible to open up the black 
box and reveal the full decision making 
process in a way that is easily 
comprehensible to humans.

Different groups have varying perspectives 
and demands on the level of interpretability 
required for AI. Executives are responsible 
for deciding the minimum set of 
assurances that need to be in place to 
establish best practices and will 
demand an appropriate ‘shield’ against 
unintended consequences and reputational 
damage. Management require 
interpretability to gain comfort and build 
confidence that they should deploy the 
system. Developers will therefore need AI 
systems to be explainable to get approval 
to move into production. Users (staff and 
consumers) want confidence that the AI 
system is accurately making (or informing) 
the right decisions. Society wants to know 
that the system is operating in line with 
basic ethical principles in areas such as the 
avoidance of manipulation and bias.

Organisations are facing growing pressure 
from customers and regulators to make 
sure their AI technology aligns with ethical 
norms, and operates within publicly 
acceptable boundaries. 

A particular source of concern is the use of 
models that exhibit unintentional 
demographic bias. The use of explainable 
models is one way of checking for bias and 
decision making that doesn’t violate ethical 
norms or business strategy.

Organisations have a duty to ensure they 
design AI that works and is robust. 
Adapting AI systems to fall in line with a 
responsible technology approach will be an 
ongoing challenge. PwC is helping 
organisations consider the ethics, morality, 
and societal implications of AI through 
Responsible AI (PwC 2017).

Benefits of interpretability
There are significant business benefits of 
building interpretability into AI systems. As 
well as helping address pressures such as 
regulation, and adopt good practices 
around accountability and ethics, there are 
significant benefits to be gained from being 
on the front foot and investing in 
explainability today. These include building 
trust – using explainable AI systems 
provides greater visibility over unknown 
vulnerabilities and flaws and can assure 
stakeholders that the system is operating 
as desired. XAI can also help to improve 
performance – understanding why and how 
your model works enables you to fine tune 
and optimise the model. How could better 
insights into business drivers such as 
revenue, cost, customer behaviour and 
employee turnover, extracted from decision 
making AI, improve your strategy? Further 
benefits include enhanced control – 
understanding more about system 
behaviour provides greater visibility over 
unknown vulnerabilities and flaws. The 
ability to rapidly identify and correct 
mistakes in low criticality situations add up 
if applied across all intelligent automaton.

Use case criticality
How far does your business need to go? 
When AI is used to target consumers 
through advertising, make investment 
decisions or drive cars, the required levels 
of interpretability will clearly vary. We 
believe that there are three key factors to 
consider when determining where 
interpretability is required and to what level 
(see Exhibit 2).
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The way forward on 
interpretability
In this paper, we outline why interpretability 
is now vital to capitalising on AI, the key 
considerations for judging how explainable 
your AI model must be, and the business 
benefits from making explainability a 
priority. PwC’s use case criticality 
framework helps address risks associated 
with a given use case and our assessment 
recommends optimal outcomes for 
interpretability, validation and verification, 
rigour and risk management (including 
bespoke controls and governance 
structure) tailored to your organisation. As 
with Responsible AI, the objective of XAI 
isn’t to stifle or slow down innovation, but 
rather to accelerate it by giving your 
business the assurance and platform for 
execution you need to capitalise on the full 
potential of AI.

The more critical the use case, the more interpretability will be required. However, the 
need to get inside the black box may limit the scope of the AI system – how can you 
balance trade-offs in areas such as increasing accuracy and performance while 
improving interpretability? 

A thorough assessment of the utility and risk of a use case informs a set of 
recommendations around interpretability and risk management, which helps drive 
executive decision making to optimise performance and return on investment.

The type of AI
The type of AI used is 
the major determining 
factor in what level of 
interpretability is 
feasible and which 
techniques can be 
deployed. The major 
distinction is between 
rules and non-rules 
based systems. 
Non-rules based 
models include ML 
algorithms which fall 
into three broad 
categories 
(see Exhibit 1).

The type of 
interpretability
There are two 
dimensions to 
interpretability. 
Transparency helps 
shed light on black box 
models, whilst 
explainability helps 
organisations to 
rationalise and 
understand AI decision 
making:

• Explainability ‘why 
did it do that?’

• Transparency ‘how 
does it work?’

The type of use
The degree to which an 
organisation is required 
to be able to explain 
how the system works 
depends on the nature 
of the use case. There 
are six key domains for 
evaluating the criticality 
of use cases 
determined by three 
factors:

• Use case 
considerations; 

• Enterprise 
considerations;

• Environmental 
considerations.

Exhibit 2 | Gauging the required level of interpretability

Source: PwC
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Use case criticality:

The importance of explainability doesn’t just depend on the degree 
of functional opacity caused by the complexity of your machine 
learning models, but also the impact of the decisions they make.

Not all AI is built equal, so it’s important to 
think about why and when explanations are 
useful. Requiring every AI system to explain 
every decision could result in less efficient 
systems, forced design choices, and a bias 
towards explainable, but less capable and 
versatile outcomes. 

Working as intended?
A primary driver for model 
interpretability is the need to 
understand how a given model makes 
predictions, while ensuring that it does 
so according to the desired 
specifications and requirements 
demanded of it.

How sensitive is the impact?
The need for interpretability also 
depends on the impact. For an AI 
system for targeted advertising, for 
example, a relatively low level of 
interpretability could suffice, as the 
consequences of it going wrong are 
negligible. On the other hand, the 
interpretability for an AI based diagnosis 
system would be significantly higher. 
Any errors could not only harm the 
patient, but also deter adoption of such 
systems.

Are you comfortable with the 
level of control?
The other key piece in the jigsaw is the 
level of autonomy. Does the AI system 
make decisions and perform actions 
consequently, or do its outputs function 
as mere recommendations to human 
users who can then decide whether or 
not to follow these? Explainable factors 
can be used for a level of rules based 
control or to flag to humans 
automatically. It’s important to be able to 
fully understand a system before 
allowing it to make business decisions 
without human intervention.

Exhibit 3 | The need for Explainability

For each AI use case, the verification and 
validation process may require different 
elements of interpretability, depending on 
the level of rigour required. Beyond the risk, 
it’s important to consider commercial 
sensitivities. Opening the AI black box 
would make it comprehensible for users, 
but it could also give away valuable 
intellectual property.

Use case criticality
All these various considerations come together to determine whether explainability is necessary and the level of rigour that would 
need to be applied.

Source: PwC

Gauging the need for explanation
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Exhibit 4 outlines the main use case 
criticality evaluation criteria across six 
domains. In practice, the criticality of use 
case explainability is driven predominantly 
by three economic factors:

1. The potential economic impact of a 
single prediction;

2. The economic utility of understanding 
why the prediction was made with 
respect to the choice of actions that 
may be taken as the result of the 
prediction;

3. The economic utility of the information 
gleaned from understanding trends and 
patterns across multiple predictions 
(management information).

However, organisations must place a 
higher value on the importance of factors 
beyond the economic and technical 
drivers such as executive risk, reputation, 
and rigour.

Exhibit 4 | Use case criticality components

Revenue
The total of the economic impact of a single prediction, the economic utility of 
understanding why a single prediction was made, and the intelligence derived from a 
global understanding of the process being modeled.

Rate
The number of decisions that an AI application has to make e.g. two billion per day 
versus three per month.

Rigour
The robustness for the application: its accuracy and ability to generalise well to unseen 
data.

Regulation
The regulation determining the acceptable use and level of functional validation 
needed for a given AI application.

Reputation
How the AI application interacts with the business, stakeholders, and society and the 
extent a given use case could impact business reputation.

Risk
The potential harm due to an adverse outcome resulting from the use of the algorithm 
that goes beyond the immediate consequences and includes the organisational 
environment: executive, operational, technology, societal (including customers), ethical, 
and workforce.

Source: PwC
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Ability to explain Organisational readiness

Outcomes

Low High

Gap

Low High

Required level Current level

Source: PwC

Exhibit 5 outlines PwC’s approach to 
assessing the criticality of an AI use case. 
Explainable AI works in conjunction with 
PwC’s overarching framework for the best 
practice of AI: Responsible AI, which helps 
organisations deliver on AI in a responsible 
manner. Upon evaluation of the six main 
criteria of use case criticality, the 
framework will recommend for new use 
cases the optimal set of recommendations 
at each step of the Responsible AI journey 
to inform Explainable AI best practice for 
a given use case. Whilst for existing AI 
implementations, the outcome of the 
assessment is a gap analysis showing 
an organisation’s ability to explain model 
predictions with the required level of detail 
compared to PwC leading practice and the 
readiness of an organisation to deliver on 
AI (PwC Responsible AI, 2017).

The gap analysis provides a view that 
informs the trade-off between prediction 
accuracy and explainability. If an 
organisation is ahead of the required level 
for the ability to explain, this would suggest 
the organisation has room to trade-off some 
level of additional explainability for 
increased model accuracy. In the same 
context, a scenario where the ability to 
explain falls below the required level would 
result in a need to reduce the model 
prediction accuracy in order to achieve 
greater explainability. 

Strategy Design Develop Operate

Responsible AI

Exhibit 5 | Use case criticality

Revenue

Rate

Rigour

Regulation

Reputation

Risk

Use case criticality criteria

The interpretability feasibility and 
optimal techniques

The required level of validation 
and verification

The level of ongoing risk management 
including appropriate controls and 
governance

The ways you can reduce your 
risk profile

Explainable AI

Gap
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Key considerations for explainability:

Given a compelling rationale for incorporating explainability into an 
application, how do you choose the appropriate machine learning 
algorithm, explanation technique, and method for presenting the 
explanation to a human?

Explainable AI makes it possible to open 
up the black box and reveal the aspects of 
the decision making process that provide a 
meaningful explanation to humans. This 
however comes with the need for additional 
software components and application 
design considerations.

Explainable by design
As with most engineering processes, you 
must consider the capabilities your system 
requires at the early stages of the design 
phase. Explainability is no different – it 
needs to be considered up front and 
embedded into the design of the AI 
application. It affects the choice of 
machine learning algorithm and may 
impact the way you choose to 
pre-process data. Often this comes down 
to a series of design trade-offs.

How to embark on explainability

Trade-off between performance 
and explainability
Explainable systems usually incorporate 
some sort of model interpreter. We can 
think of interpretation as a method for 
mapping of a concept (e.g. ‘cat’) to input 
features that a human can make sense of 
(e.g. group of pixels representing whiskers). 
The explanation is the collection of 
interpretable features that contribute to the 
decision (e.g. whiskers + tail + collar => cat). 
Thus, explainability is linked directly to 
model interpretability – the degree to which 
the interpreter can assign interpretable 
features to a model prediction.

Interpretability is a characteristic of a 
model that is generally considered to come 
at a cost. As a rule of thumb, the more 
complex the model, the more accurate it is, 
but the less interpretable it is. See Exhibit 
6: Relative explainability of learning 
algorithms. Complexity is primarily driven 
by the class of machine learning algorithm 
used to generate a model (e.g. Deep Neural 
Network vs Decision Tree) as well as its 
size (e.g the number of hidden layers in a 
neural network).
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Exhibit 6 | Relative explainability of learning algorithms

Source: DARPA

Some models however, such as 
decision trees, are highly amenable 
to explanation. It is possible to build 
commercially useful models where 
the entire decision process can be 
diagrammatically illustrated. If the model 
becomes too large for useful graphical 
representation, the tree structure of the 
model means that interpreter software can 
trace clear decision paths through the 
model and extract the key determinants of 
a prediction. Neural networks on the other 
hand, whilst amenable to graph analysis, 
contain many more connections and have 
more subtle properties with respect to 
node interactions that are inherently 
difficult to interpret.

It’s worth noting that some researchers are 
challenging this long held view (such as 
Montavon et al. 2017), who argue that 
recent advances in interpreting neural 
networks allow users deeper insights 
unavailable from simple models because of 
their complexity. This makes intuitive sense 
when, as we shall see later, with features 
that comprise of Deep Neural Nets (DNNs), 
explanations can include representations 
of complex concepts as images that can’t 
be meaningfully represented by a simple 
linear model.

Exhibit 8 | Pixel importance in explaining image recognition

Source: Tulio Ribeiro et al (2016)

Exhibit 7 | Feature importances in investment product suitability

Source: PwC

Likely to be unusable

Suitability metre

Likely to be usable

Top contributing factors

Factors Contribution

1. Age

2. Risk profile

3. Annual income

4. Expenditure

5. Assets

6. Liabilities

7. Expected retirement age

8. Amount invested

9. Product sold

10. Channel

15.0

13.6

10.5

9.0

3.4

3.0

3.0

2.1

2.1

1.9
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Interpretability is a necessary but not 
sufficient condition for explanation. A 
model interpreter may generate 
representation of a decision process, but 
turning this into a useful explanation can 
be challenging for the following reasons: 

The limits of explainability
The type of learning algorithm that 
generates a model is a key factor in 
determining explainability. But the type of 
explanation required, and the type of input 
data used in the model can be equally 
important.

Feature importances
Most explanations are limited to a list or 
graphical representation of the main 
features that influenced a decision and 
their relative importance. Exhibits 7, 8 and 
9 show typical approaches to explanation 
presentation.

Presenting feature importances in these 
ways largely ignores the details of 
interactions between features, so even the 
richest explanations based on this 
approach are limited to relatively simple 
statements. Domain specific logic can be 
applied to explanations and presented as 
text with a natural language generation 
(NLG) approach. PwC has successfully 
implemented this method in domains such 
as corporate credit rating in which rich 
textual explanations are automatically 
generated. Here is an excerpt from an 
automatically generated credit report: 
‘Given the company’s financials, media 
references linking it with acquisitions is 
associated with credit strength’. 

As you can see, being automatically 
generated, the grammar is not perfect, 
however statements such as these can be 
aggregated and more domain knowledge 
applied to build more ever more complex 
explanations.

Problem domain
Certain types of problem can’t be readily 
understood by quantifying a handful of 
factors. For example in the field of 
genomics, the prediction is usually almost 
entirely a driven by the combinations’ 
nucleotides. Here, simple feature 
importance conveys little by way of an 
explanation, although richer explanatory 
representations can be informative (see 
Vidovic et al 2016).

Data preprocessing
Many ML applications employ significant 
data pre-processing to improve accuracy. 
For example, dimensionality reduction 
through principal component analysis 
(PCA), or using word vector models on 
textual data can obscure the original 
human meanings of the data making 
explanations less informative.

Correlated input features
When highly correlated training data 
is available, correlates are routinely 
dropped during the feature selection 
process or simply swamped by the 
other correlates with more predictive 
power. Hence ambiguity concerning the 
latent factor behind the correlates is hidden 
from the explanation, potentially leading 
the user to an incorrect conclusion.

Exhibit 9 | Text importance to explain article saliency

Source: PwC, Original article: Bloomberg

Type of prediction
Certain types of model prediction are 
easier to explain than others. Binary 
classifiers are the easiest (i.e. ‘Is it X or is it 
Y?’). We can talk about factors that push 
the decision in one way or the other. This 
can be extended to ordinal multilabel 
classifiers (e.g. predicting credit ratings) 
and regressors (e.g. predicting store sales) 
that have a natural ‘direction’ in the output 
(magnitude of risk or revenue). This allows 
straightforward application of domain 
specific knowledge to enrich explanations. 
In contrast, multi-label classifiers in 
domains where there is little or no inherent 
order (as in many image classification 
problems), are generally limited to ‘one vs 
all’ type explanations.
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What explanation techniques 
are available?
A number of methods for generating 
explanations exist, ranging from classic black 
box analysis approaches that have been 
used in science and engineering for 
generations, to the latest methods designed 
for Deep Neural Networks (DNNs). We 
cannot list these exhaustively, but provide a 
summary of the more popular approaches 
we see used by the machine learning 
community, as well as some promising 
recent developments.

We can broadly group explanation 
techniques in model-agnostic approaches 
and learning algorithm specific approaches. 
Model-agnostic approaches are essentially 
‘black box’ explainers and can in principle 
be applied to any ML model. They do not 
need to see what is going on under the 
hood, just tweak the inputs and observe the 
effects. This can come at the cost of less 
explainability than algorithm specific 
techniques that more directly probe a 
model’s inner workings. Nonetheless, these 
approaches are often very effective and 
straightforward to implement.

Sensitivity analysis:
This is an approach that is applied in many 
domains to understand the behaviour of 
not just models, but any opaque, complex 
system, such as electrical circuits. Whilst 
there are a number of formal approaches 
that are designed to give particular 
statistical insights, the simplest approach 
is to marginally alter (perturb) a single input 
feature and measure the change in model 
output. This gives a local, feature specific, 
linear approximation of the model’s 
response. By repeating this process for 
many values, a more extensive picture of 
model behaviour can be built up. This 
approach is often extended to Partial 
Dependence Plots (PDP) or Individual 
Conditional Expectation (ICE) Plots to give 
global graphical representation of single 
feature importances. Extending basic 
sensitivity analysis into higher dimensions 
is trivial: multiple rather than a single 
features are perturbed to build a composite 
picture of feature importances.

Human explanations are 
often flawed:
It’s worth noting that, to some degree, 
human explanations suffer from the 
limits described above. We are prone 
to oversimplification, cognitive biases, 
and have difficulty explaining abstract 
concepts unless specific language 
already exists. Whilst we can easily 
recognise the difference between many 
common items, we can have difficulty 
defining the differences (e.g. we can 
see a pair of twins are different, but 
can’t quite explain why). More 
worryingly, research by psychologists 
such as Gazzaniga (2012)3 show that 
human post-hoc explanations of their 
own behaviour can be grossly 
inaccurate, with subconscious 
processes creating consistent 
narratives to support a positive sense 
of self rather than reporting the ‘facts’. 
Thus, even the best intentioned 
human explanations can be 
completely unreliable unbeknownst 
to the explainer.

3 Who’s in Charge?: Free Will and the Science of the Brain 
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The benefits of this method are its 
simplicity and ease of implementation. In 
many problem domains, the results are 
very intuitive. It works particularly well for 
simple models with smoothly varying 
behaviour and well separated features. 
However, its simplicity means that it can be 
applied to complex models such as DNNs 
where it is effective for extracting pixel 
importance in image recognition 
explanations.

It’s important to note that sensitivity 
analysis gives explanations for the variation 
in the model output rather than the 
absolute value. Usually this provides 
sufficient explanation: the question ‘what 
makes this image more cat-like?’ is 
essentially indistinguishable from ‘what 
makes this image a cat?’.

This approach has several drawbacks: it 
doesn’t directly capture interactions 
amongst features, and simple sensitivity 
measures can be too approximate. This 
can be potentially problematic for 
discontinuous features such as categorical 
information and one hot encoding 
frequently used in natural language 
processing.

Local Interpretable Model – 
Agnostic Explanations – LIME4

LIME addresses the main shortcomings of 
basic sensitivity analysis. Like sensitivity 
analysis, it can be applied to any model, but 
unlike sensitivity analysis it captures feature 
interactions. It does so by performing 
various multi-feature perturbations around 
a particular prediction and measuring the 
results. It then fits a surrogate (linear) model 
to these results from which it gets feature 
importances, capturing local feature 
interactions. It can also handle non-
continuous input features frequently found 
in machine learning applications. An open 
source implementation of this approach is 
available5 which currently makes this the 
‘go to’ interpreter for many practitioners.

Shapley Additive 
Explanations – SHAP6

Similarly to LIME, SHAP is a local surrogate 
model approach to establishing feature 
importance. It uses the game theoretic 
concept of Shapley values to optimally 
assign feature importances. The Shapley 
value of a feature’s importance is its 
average expected marginal 
contribution after all possible feature 
combinations have been considered.

The Shapley value guarantees to perfectly 
distribute the marginal effect of a given 
feature across the feature values of the 
instance. Thus SHAP currently produces the 
best possible feature importance type 
explanation possible with a model agnostic 
approach. This however comes at a cost: 
the computational requirements of exploring 
all possible feature combinations grow 
exponentially with the number of input 
features. For the vast majority of problems, 
this makes complete implementation of this 
approach impractical and approximations 
must suffice.

The methods outlined above can be 
applied to any class of model, however, 
richer and more accurate explanations 
are often available with learning algorithm 
specific interpreters.

Tree interpreters
As discussed earlier, decision trees are a 
highly interpretable class of model, albeit 
one of the least accurate. The Random 
Forest algorithm is an extension of the 
basic decision tree algorithm which can 
achieve high accuracy. It is an ensemble 
method that trains many similar variations 
of decision trees and makes decisions 
based on the majority vote of individual 
trees. A decision tree interpreter can be 
applied to individual trees in the forest and 
the feature importances aggregated. Thus, 
random forests are highly interpretable 
models with high accuracy that can be 
understood both globally and locally.

This makes random forests the ‘go to’ 
algorithm in many commercial applications. 
A widely used open source tree interpreter 
package ‘treeinterpreter’ is available that 
makes this approach relatively 
straightforward to implement7, although 
significant domain expertise may be 
required for multi-label classification 
problems.

Neural Network Interpreters
Neural networks, particularly DNNs, are 
characterised by their complexity and 
consequently are widely considered 
difficult to interpret. In our opinion, the 
issue is more one of a lack of 
generalisability. There is no inherent barrier 
to gaining insight into the inner workings of 
neural networks, but it often needs to be 
tackled on a case by case basis requiring 
significantly more expertise and effort than 
say the relatively trivial exercise of 
extracting global feature importances from 
a random forest. 

This effort is often rewarded with sometimes 
surprising and informative insights into how 
the DNN decomposes a problem into 
hierarchies (e.g. fine texture vs. gross 
structure in image classifiers), manifolds 
(simplified representations of more complex 
concepts) and class label ‘prototypes’ 
(idealised representations of target classes).

4 Tulio Riberio et al. (2016) 
5 http://github.com/marcotcr/lime 
6 Lundberg and Lee (2017) 
7 http://blog.datadive.net/random-forest-interpretation-with-scikit-learn/
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Activation maximisation (AM)
Is a method that can be used to find a 
DNNs prototypical representation of a 
particular concept. For example, in an 
image recognition DNN, AM could be used 
to produce a visual representation of the 
DNNs concept of a cat. By searching for 
input patterns that maximise a particular 
output (e.g. the probability the image is a 
cat), a prototypical cat image can be 
extracted. Thus, AM can afford direct 
interpretable insight into the internal 
representations of DNNs.

Whilst sensitivity analysis is commonly 
used to explain feature importance in 
DNNs, a neural network specific approach 
called Relevance Propagation can 
produce more accurate, robust 
explanations. It can be thought of the 
inverse of sensitivity analysis in that the 
algorithm starts at the model output, and 
works back through the network, assigning 
relevance of inputs from the preceding 

layers (when fed-forward) until it reaches 
the input layer. Whilst there are many 
variations on this approach, they tend to be 
implemented on a bespoke basis. However, 
an open source implementation called 
DeepLIFT8 is available for those who would 
rather not build an interpreter from scratch. 

In the last section, the trade-offs, limits and 
methods for explainable AI were discussed. 
In the next section we extend the 
discussion to the implications for model 
evaluation – this is key to the safe and 
effective use of AI. In our opinion, even 
slight improvements in the model 
evaluation process can pay dividends in 
future model performance and reducing 
the risk of adverse model behaviour.

Model evaluation: going beyond 
statistical measures
Machine Learning model evaluation is 
critical to validate that systems meet the 
intended purpose and functional 
requirements. The de facto approach 
amongst ML practitioners has been to test 
models on a held-out portion of the training 
data and report error. Graphical analysis of 
confusion matrices, ROC curves and 
learning curves can further enhance the 
tester’s understanding of the model’s 
behaviour.

Beyond these quantitative approaches, a 
functional understanding of ML model 
behaviour using XAI can give critical insight 
not available through quantitative validation 
approaches. An example is a study carried 
out in the nineties using rules based learning 
and neural networks to decide which 
pneumonia cases should be admitted to 
hospital or treated at home. The models 
were trained on patients’ recovery in 
historical cases9. 

8 Shrikumar et al (2017). See also: https://github.com/kundajelab/deeplift 
9 Caruana, et al. (2015)
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Both models predicted patient recovery with 
high accuracy with the neural network 
found to be the most accurate. Both 
models predicted that pneumonia patients 
with asthma shouldn’t be admitted 
because they had a lower risk of dying. 

In fact, pneumonia patients were at such 
high risk, they were routinely admitted 
directly to the intensive care unit, treated 
aggressively, and as a consequence had a 
high survival rate. Because the rules based 
model was interpretable, it was possible to 
see that the model had learnt ‘if the patient 
has asthma, they are at lower risk’. Despite 
ostensibly good quantitative performance 
metrics, the counterintuitive explanation 
invalidated the model from a clinical point of 
view. Had this model been deployed in 
production, it could have led to unnecessary 
patient risk and possibly death.

Thus a functional explanation, even if a gross 
approximation of the underlying model 
complexity, can catch the type of potentially 
dangerous informational shortcuts machine 
learning algorithms are good at finding in 
contravention of the developers intentions.

Whilst the previous example is unlikely to 
occur these days, there are many examples 
of badly trained algorithms using data such 
as people’s names to infer demographic 
characteristics, using URLs in mined text to 
classify documents and using copyright tags 
to classify images. These models may 
perform well in testing, but are liable to 
catastrophic failure or unintended 
consequences in production. This type of 
oversight can be avoided with even a fairly 
rudimentary deployment of XAI.

Continuous evaluation 
Unlike traditional software and hand 
crafted top down models, machine learning 
models may be periodically retrained or 
continuously updated (online learning) as 
they learn from new instances. Factoring 
explainable AI outputs into automated 
controls means robust qualitative rules 
based safeguards against unexpected, 
unwanted, and known weakness in model 
behaviour can be applied. For example, if a 
single pixel in an image is identified as the 
most important feature in a decision, the 
model could be the target of an adversarial 
attack by criminals. Applying the rule ‘if a 
single pixel is the primary explanatory 
feature by a large margin, then raise alert’ 
could safeguard against such attacks. 
Whether the reason is an adversarial attack 
or not, XAI has alerted us to problem, 
whatever the nature, through the 
application of common sense rules.

2.12 Model transparency
Model transparency is concerned with 
conveying to a user the structural details of 
the model, statistical and other descriptive 
properties of the training data, and 
evaluation metrics from which likely 
behaviour can be inferred. Irrespective of 
the need for explainable AI or not, this is 
basic information without which it is 
impossible to make informed use of a 
machine learning algorithm.

In cases where engineers are charged with 
making someone else’s model explainable, 
as may be the case with a commercially 
available off the shelf model, the model’s 
users should take into account the degree 
of transparency that comes with the model. 
Selecting an optimal approach to XAI is 
significantly more straightforward when the 
details of the model are well known 
rather than having to deal with a mystery 
black box.

9 Caruana, et al. (2015)
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The greater the confidence in the AI, the faster and more widely it can be deployed. Your 
business will also be in a stronger position to foster innovation and move ahead of your 
competitors in developing and adopting next generation capabilities.

Business benefits 

How XAI can not only strengthen stakeholder confidence, but 
also improve performance, make better use of AI and stimulate 
further development.

Exhibit 10 | Eight business benefits of Explainable AI

Optimise Retain Maintain Comply

Model performance Control Trust Accountability

Decision making Safety Ethics Regulation

Source: PwC

Turning explainability into a competitive differentiator
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Optimise

Exhibit 11 | Reinforcement learning: 
AlphaGo Zero

When using explainable AI systems, 
we can try to extract this distilled 
knowledge from the AI system in 
order to acquire new insights. One 
example of such knowledge transfer 
from AI system to human arose 
when DeepMind’s AI model 
AlphaGo identified new strategies to 
play Go, which certainly now have 
also been adapted by professional 
human players.

What is remarkable about AlphaGo is 
that the model didn’t require any 
human input at all. It wasn’t given any 
rules; instead it mastered the game of 
Go by playing alone and against itself.

So how does it work? There are three 
main components:  

1. The Policy Network (trained on 
high level games to imitate players); 

2. The Value Network (evaluate the 
board position and calculate the 
probability of winning in a given 
position);

3. The Tree Search (looks through 
different variations of the game to 
try and figure out what will happen 
in the future).

First the Policy Network scans the 
position and comes up with the 
interesting spots to play and builds up 
a tree of variations. It then deploys the 
Value Net to tell how promising the 
outcome of this particular variation is 
with the goal of maximising the 
probability of winning.

The extraordinary progress of this form 
of reinforcement learning offers 
immense potential to support human 
decision making. Instead of playing 
Go or Chess, an AI model in the right 
environment can ‘play’ at corporate 
strategy, consumer retention, or 
designing a new product.

Decision making
As discussed earlier, the primary use of 
machine learning applications in business is 
automated decision making. However, often 
we want to use models primarily for 
analytical insights. For example, you could 
train a model to predict store sales across a 
large retail chain using data on location, 
opening hours, weather, time of year, 
products carried, outlet size etc. The model 
would allow you to predict sales across my 
stores on any given day of the year in a 
variety of weather conditions. However, by 
building an explainable model, it’s possible 
to see what the main drivers of sales are 
and use this information to boost revenues. 

A popular use of machine learning is 
predicting customer churn. A 90% 
accurate prediction that Joe Bloggs (your 
customer) will switch to a competitor in the 
next month is interesting. But so what? 
Perhaps you could offer a discount if you 
want to retain the customer, but what if 
they are switching because they had a bad 
customer service experience and aren’t 
particularly price sensitive in this instance. 
You may unnecessarily offer them (and 
many others) ineffective and expensive 
incentives without realising you are losing 
customers for a reason that has nothing to 
do with price. If the churn model could 
make a 90% accurate prediction with a 
reason ‘the customer will switch to a 
competitor because they spent 47 minutes 
waiting for customer service to answer the 
phone over the past 12 months,’ then fixing 
the root cause (customer service) is by far 
the better strategy.

Model performance
One of the keys to maximising performance 
is understanding the potential weaknesses. 
The better the understanding of what the 
models are doing and why they sometimes 
fail, the easier it is to improve them. 
DeepMind was able to improve and 
optimise AlphaGo (the machine that 
famously beat the world’s best Go player) 
through being able to see and understand 
how and why the system was making 
particular decisions. It would not be 
possible to fully optimise AlphaGo and 
create the success we know today if the 
system was functioning as a black box. 

Explainability is a powerful tool for 
detecting flaws in the model and biases in 
the data which builds trust for all users. It 
can help verifying predictions, for 
improving models, and for gaining new 
insights into the problem at hand. 
Detecting biases in the model or the 
dataset is easier when you understand 
what the model is doing and why it arrives 
at its predictions.

Source: Mastering the Game of Go without 
Human Knowledge, Silver et al. 2017
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Retain

Control
To move from proof of concept to 
fully-fledged implementation, you need to 
be confident that your system satisfies 
certain intended requirements, and that it 
does not have any unwanted behaviours. If 
the system makes a mistake, organisations 
need to be able to identify that something 
is going wrong in order to take corrective 
action or even to shut down the AI system. 

XAI can help your organisation retain 
control over AI by monitoring performance, 
flagging errors and providing a mechanism 
to turn the system off. From a data privacy 
point of view, XAI can help to ensure only 
permitted data is being used, for an agreed 
purpose, and make it possible to delete 
data if required. 

Developers frequently try to solve problems 
by ‘throwing data’ at AI in instances of a 
black box system. Having visibility over the 
data and features AI models are using to 
provide an output can ensure that issues 
arise can be understood and a level of 
control can be maintained. For systems 
that learn through customer interactions, 
interpretable AI systems can shed light on 
any adverse training drift.

Safety
There have been several concerns around 
safety and security of AI systems, especially 
as they become more powerful and 
widespread. This can be traced back to a 
range of factors including deliberate 
unethical design, engineering oversights, 
hacking and the effect of the environment 
the AI operates in. 

XAI can help to identify these kinds of 
faults. It’s also important to work closely 
with cyber detection and protection 
teams to guard against hacking and 
deliberate manipulation of learning and 
reward systems.

Maintain

Trust
Building trust in artificial intelligence 
means providing proof to a wide array of 
stakeholders that the algorithms are 
making the correct decisions for the right 
reasons. Explainable algorithms can 
provide this up to a point, but even with 
state of the art machine learning evaluation 
methods and highly interpretable model 
architectures, the context problem 
persists: AI is trained on historical datasets 
which reflect certain implicit assumptions 
about the way the world works. Events can 
occur that radically reframe problems (an 
earthquake, a new central bank policy, a 
new technology) and make the historical 
training data invalid. By gaining an intuitive 
understanding of a model’s behaviour, the 
individuals responsible for the model can 
spot when the model is likely to fail and 
take the appropriate action.

XAI also helps to build trust by 
strengthening the stability, predictability 
and repeatability of interpretable models. 
When stakeholders see a stable set of 
results, this helps to strengthen confidence 
over time. Once that faith has been 
established, end users will find it easier to 
trust other applications that they may not 
have seen. This is especially important in 
the development of AI, as models are likely 
to be deployed in settings where their use 
may alter the environment, possibly 
invalidating future predictions.

Ethics
In software development life cycles, 
engineers and developers are focused on 
functional requirements while business 
teams are focused on speeding up AI 
implementation and boosting performance. 
The ethical impact and other unintended 
consequences can easily be obscured by 
the need to meet these pressing 
objectives.

It’s important that a moral compass is built 
into the AI training from the outset and AI 
behaviour is closely monitored thereafter 
through XAI evaluation. Where appropriate, 
a formal mechanism that aligns a company’s 
technology design and development with its 
ethical values and principles and risk 
appetite may be necessary.

PwC is working towards embedding ethical 
considerations into the design phase of the 
AI development cycle, with clear 
governance and controls to guard against 
risks emerging from ethical oversight. 
Accountability must be shared between 
business managers and solution owners 
with a view of understanding and mitigating 
risks early on.

Comply

Accountability
It’s important to be clear who is 
accountable for an AI system’s decisions. 
This in turn demands a clear XAI-enabled 
understanding of how the system operates, 
how it makes decisions or 
recommendations, and how it learns and 
evolves over time and how to ensure it 
functions as intended.

To assign responsibility for an adverse event 
caused by AI, a chain of causality from the 
AI agent back to the person or organisation 
needs to be established that can be 
reasonably held responsible for its actions. 
Depending on the nature of the adverse 
event, responsibility will sit with different 
actors within the causal chain that lead to 
the problem. It could be the person who 
made the decision to deploy the AI for a 
task to which it was ill suited, or it could rest 
with the original software developers who 
failed to build in sufficient safety controls.

Regulation
While AI is lightly regulated at present, this is 
likely to change as its impact on everyday 
lives becomes more pervasive. Regulatory 
bodies and standard institutions are focusing 
on a number of AI-related areas, with the 
establishment of standards for governance, 
accuracy, transparency and explainability 
being high on the agenda. Further regulatory 
priorities include safeguarding potentially 
vulnerable consumers. 

It’s important for industry bodies and 
regulators to bring regulation into line 
with developments in AI and mirroring the 
AI ecosystem within their sectors. This of 
course means that many of these bodies 
will need to acquire the requisite expertise 
to effectively discharge this duty. There is 
an important role for professional and 
academic bodies representing the 
technology community (for example ACM 
and IEEE) to play as technical experts and 
help advise policy.

However, the current risks from AI come 
from its deployment in specific industrial 
contexts, and current regulatory systems 
are generally far better placed to monitor, 
and sanction their constituents. PwC is 
actively advising regulators, for instance 
the Financial Conduct Authority (FCA), on 
the impact of current developments of the 
field of AI including the creation of safe 
‘sandbox’ environments for live testing. 
Working closely with the British Standards 
Institution (BSI) and the International 
Organisation for Standardisation (ISO), 
PwC is identifying requirements for specific 
areas of AI/ML to help develop a new set of 
standards for AI.
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Exhibit 12 | GDPR for Machine Learning

The EU’s General Data Protection Regulation (GDPR) is likely to create a host of new 
and complex obligations between data subjects and models, particularly around 
machine learning (ML). This section attempts to address some of these questions:

1. Does the GDPR prohibit machine learning?
Technically, The GDPR contains a prohibition on the use of automated 
decision-making without human intervention. However, this prohibition is 
circumvented where processing is contractually necessary, authorised by 
another law, or the data subject has explicitly consented.

2. Is there a ‘right to explainability’ from ML?
Much of the predictive power of ML lies in complexity that’s difficult, if not 
impossible, to explain. Articles 13-15 set out a right to ‘meaningful information 
about the logic involved’, and data subjects are entitled not to be subject to 
(Article 22), to receive an explanation of, and to challenge decisions (Recital 71). 
While these provisions may establish the need for a detailed explanation of a 
model’s workings, regulators are more likely to focus on a data subject’s ability to 
make informed decisions.

3.  Do data subjects have the ability to demand that models be 
retrained without their data?

If consent is withdrawn for the data used in an ML model, the model might 
theoretically have to be retrained on new data. However all processing that occurred 
before the withdrawal remains legal. If the data was legally used to create a model or 
prediction, training data can be deleted or modified without affecting the model. It 
may technically be possible to rediscover original data (see Nicolas Papernot et. al), 
however this is unlikely in practice, and it is not expected that models will be subject 
to constant demands of being re-trained on new data.

This considers just some of the complex intersections between ML and the GDPR 
and these questions remain extremely nuanced. Lawyers and privacy engineers are 
going to be a central component of data science programs in the future.

Source: Information Commissioner’s Office
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We are moving out of the carefree days of 
silicon valley giants getting content in front 
of eyeballs and into a broad, industrial 
revolution where things are about to get a 
lot more serious…. Any cognitive system 
allowed to take actions on the back of its 
predictions had better be able to explain 
itself, if even in a grossly simplified way.

Explainability has been largely ignored by 
the business community and is something 
PwC is helping organisations to solve. 
There are no perfect methods, and some 
problems are inherently not semantically 
understandable, but most business 
problems are amenable to some degree of 
explanation that de-risks AI, builds trust, 
and reduces overall enterprise risk. Making 
XAI a core competency and part of your 
approach to AI design and QA will pay 
dividends today and in the future.

PwC is helping advise and assure our 
clients by building and helping 
organisations build AI systems that are 
explainable, transparent, and interpretable 
and by assessing and assuring 
organisations have built AI modes that 
adhere to our standards.

Key takeaways:

1.  AI must be driven by 
the business

Developers are mostly focussed on 
delivering well-defined functional 
requirements, and Business Managers on 
business metrics and regulatory 
compliance. Concerns around algorithmic 
impact tend only to get attention when 
algorithms fail or have a negative impact on 
the bottom line. Because AI software is 
inherently more adaptive than traditional 
decision-making algorithms, problems can 
unfold with quicker and greater impact. 
Explainable AI can forge the link between 
non-technical executives and developers, 
allowing the effective transmission of top 
level strategy to junior data scientists. 
Insufficient governance and quality 
assurance around this technology is 
inherently unethical and needs to be 
addressed at all levels of the organisation. 
Without XAI, governance is very difficult.

2. Executive accountability
With the proliferation of AI systems and, 
equally, the increased impact on 
organisations, individuals and society, it 
needs to be clear who is accountable for 
an AI system’s decisions. If executives are 
required to accept accountability for AI, 
they will need to understand the risk it 
introduces to their business. Without a 
deeper understanding of the system’s 
rationales, executives would introduce 
unknown risks to their risk profile. In order 
to accept accountability, executives must 
have the confidence that a system operates 
within defined boundaries.

XAI is only going to get 
more important

AI is advancing, deployment is proliferating and the focus of 
regulators, customers and other stakeholders is increasing in 
step. XAI can help you keep pace.

Conclusion
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3. Doing the right thing, right
Humans are the designers of AI systems, 
and ethics are embedded before the very 
first line of code is written. Hence it is 
imperative to have defined ethics and core 
values, along with a governance system 
that ensures compliance, before the 
development and deployment of an AI 
system. These foundations help guide your 
organisation when engaging with potential 
customers, restricting them from unethical 
misuse. It’s important to ensure that 
business managers understand, are 
accountable for the risks and, where 
appropriate, a formal mechanism is in 
place that aligns your technology with its 
ethical policies and risk appetite.

4. Future-proofing your AI
The need to be interpretable is increasing. 
In sectors such as financial services, the 
use of advanced AI is already so well 
entrenched that risks should be at the top 
of the risk register. Other sectors such as 
healthcare and transport are fast following 
suit. And, as AI continues to permeate 
through the economy, all sectors would 
eventually need to judge the criticality and 
impact of their AI on the one side and how 
much faith they have in the outcomes on 
the other. A new wave of AI specific 

regulation is also coming. In this respect, 
AI explainability is now coming to rank 
alongside cyber as a threat, but also a 
valuable differentiator if handled smartly.

5. Explainable by design
You might assume that this isn’t an 
immediate priority as the systems you’re 
using are still fairly rudimentary and 
humans still have the last word on key 
decisions. But how long will this be the 
case and how can you lay secure 
foundations for moving ahead? The 
inability to see inside the black box can 
only hold up AI development and adoption. 
You might assume that the necessary 
layers of understanding and control can be 
applied as your systems develop. But that 
would simply leave you with the same 
jumble of bolt-ons that have made most 
technology infrastructures so difficult to 
manage and optimise. It’s important to 
begin thinking about interpretability now as 
AI becomes more prevalent and complex. 
This is akin to AI safety research, investing 
the time and effort now to be prepared for 
the future. And by proactively putting in 
place the right measures early, you can 
future-proof AI assurance rather than 
relying on decades of reactive fixes.

In conclusion being able to explain not just 
how the black box works, but your 
approach to designing, implementing and 
running the black box will increasingly be a 
key requirement of driving trust in AI. This 
is where the worlds of Responsible AI and 
Explainable AI collide. However, it is likely 
that you will have two classes of AI, those 
solutions that are already active and those 
that you will deploy in the future. For those 
active applications you should look to 
understand whether your ability to explain 
the results aligns with the expectations of 
the key stakeholders and whether you 
need to make any changes. It is important 
to identify any gap in understanding at 
both an algorithm and a process level. For 
those applications that are either on the 
drawing board or are yet to be identified, 
you need to look at how you will ensure you 
have a mechanism for understanding the 
level of explainability required for an 
algorithm in the idea and design phase for 
new AI applications. 

Explainability is a business issue that 
needs a business and board response, and 
not just a tech response. The time to act is 
now – get this right, and you can move 
forward with greater confidence.
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Classifying machine 
learning algorithms

Appendix 1

Reinforcement learning (RL) 
RL algorithms are software agents that learn policies about how to interact with their 
environment. They behave in a way most people expect of AI in the sense they that 
choose actions and ‘do things’ in response to other agents (such as humans). To do 
this, they rely on a state space representation of their environment. They seek to 
optimise cumulative reward over time by iteratively choosing actions that result in 
‘high value’ states. The value of various environment states are learnt in the training 
phase where the algorithm explores its environment. Applications in this domain 
include inventory management and dynamic pricing. Google DeepMind was able to 
train an algorithm, AlphaGo, using RL to beat a champion Go player. This technique 
has also been used to train robots to climb stairs like humans and to improve lane 
merging software for self-driving cars.

Unsupervised learning 
Training examples are unlabeled, so unsupervised algorithms look for naturally 
occuring patterns in the data. Historically this was usually clustering which can be 
used for segmentation tasks like customer segmentation and anomaly detection for 
financial crime detection. More recently, unsupervised approaches using DNNs 
(Autoencoders and Generative Adversarial Networks) are being increasingly used for 
filtering, dimensionality reduction, and in generative applications where models 
generate artificial examples of training instances such as human faces.

Supervised learning 
The most common approach to machine learning where the goal is to train a classifier 
or regressor by finding function that maps the training examples to training label with 
minimal error. Supervised learning is used in situations where the training data 
examples are labelled (e.g. image of a cat with label ‘cat’) and the instances 
encountered in production expected to be drawn from a similar distribution of 
instances used in training. There are many applications ranging from image 
recognition, to spam detection, to stock price prediction.

Source: PwC

Exhibit 1 | Classifying machine learning algorithms
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As discussed, explainability refers to the understandability of a 
given result viewed as post hoc interpretations. Since most of 
these models do not give direct explanations as to why or how 
the results are achieved, we have provided subjective values 
on the scale of 1 to 5 (with 1 being the most difficult and 5 
being the easiest) to rate how easy or difficult it is for an end 
user to decipher why a model made a certain decision. Each 
of these learning techniques has different structures that are 
affected by how they learn from new information.

AI algorithm 
class

Learning 
technique

Scale of 
explainability (1-5)

Reasoning/Explanation

Graphical 
models

Bayesian belief 
networks (BNNs)

3.5 BNNs are a statistical model used to describe the conditional 
dependencies between different random variables. BNNs have a high 
level of explainability because the probabilities associated with the 
parent nodes influence the final, making it possible to see how much of 
a certain feature is used to determine the final outcome.

Supervised or 
unsupervised 
learning

Decision trees 4 Decision trees partition data based on the highest information gain, 
where the nodes have the most influence. They are represented as a 
treelike structure where the most important feature is at the top, with 
other features branching off beneath it in order of relative importance. 
Out of all the ML learning techniques, decision trees are the most 
explainable because you can follow the progression of branches to 
determine the exact factors used in making the final prediction.

Supervised or 
unsupervised 
learning

Logistic 
regression

3 The most commonly used supervised learning technique, logistic 
regression represents how binary or multinomial response variables are 
related to a set of explanatory variables (that is, features). Because an 
equation is associated with the predictions of this model, we can 
investigate the influence of each feature on the final prediction. 
Equations can get messy, so we believe this technique is only 
moderately explainable.

Subjective scale of explainability 
of different classes of algorithms 
and learning techniques

Appendix 2

Exhibit 2 | Subjective scale of explainability of different classes of algorithms and learning techniques
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AI algorithm 
class

Learning 
technique

Scale of 
explainability (1-5)

Reasoning/Explanation

Supervised or 
unsupervised 
learning

Support vector 
machines (SVMs)

2 SVMs are based on the concept of decision planes that define decision 
boundaries. SVMs are similar ``a partition, it is difficult to decipher what 
features were important in calculating that result.

Supervised or 
unsupervised 
learning

K-means 
clustering 
(unsupervised)

3 K-means clustering is an unsupervised learning technique used to 
group data into ‘K’ clusters of similar features. This technique is 
moderately explainable because one can view the centre of the clusters 
as descriptors of what each group represents—although, it is not 
always clear what certain clusters mean purely based on the centroids 
(centre point) of the clusters.

Deep learning Neural networks 
(NNs)

1 Neural networks are the building blocks of all deep learning techniques 
and are becoming more prevalently used in solving ML tasks. NNs are 
based on the biological structure of the brain in which neurons connect 
to other neurons through their axon. In the same way, these networks 
have hidden layers of nodes where information is transferred based on 
the node’s activation. This algorithm is the least explainable because 
each hidden node represents a non-linear combination of all the previous 
nodes. However, Israeli computer science professor Naftali Tishby’s 
recent theoretical work in this area may help explain why and how they 
work.

Ensemble 
models

Random forest/
boosting

3 Random forest techniques operate by constructing a multitude of 
decision trees during training, then outputting the prediction that is the 
average prediction across all the trees. Even though decision trees are 
pretty explainable, random forest adds another layer of tree 
aggregation that makes understanding the final result more difficult.

Reinforcement 
learning (RL)

Q-learning 2 Q-learning is a technique that learns from positive and negative 
rewards. It uses these rewards to estimate future returns based on 
taking a certain action in a certain state. This technique is not very 
explainable because the only information given with the certain 
predicted action is the estimated future reward. Users would not be 
able to understand the agent’s intent because it is looking multiple 
steps ahead.

Natural 
language 
processing 
(NLP)

Hidden Markov 
models (HMMs)

3 HMMs can be represented as the simplest dynamic Bayesian network 
(BBNs that change over time). It is a stochastic model used to model 
randomly changing systems where the future state only depends on the 
current state. Similar to BBN, you attribute certain weight to the 
previous states based on the probabilities, although the stochastic 
nature of HMM makes it slightly less explainable.

Source: PwC
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